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Acoustic streaming in an elastico-viscous fluid 
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The acoustic streaming of an idealized elastico-viscous fluid near a cylindrical 
obstacle is considered using the boundary-layer type of approximation. It is 
shown that this streaming phenomena can be greatly influenced by the presence 
of elasticity in the fluid. 

1. Introduction 
It is a well-established fact that when a fluid is set into oscillation, as in the 

presence of an acoustic wave or an oscillating boundary, steady streaming motions 
are created. Streaming of this kind had been reported over a century ago by 
Faraday (1831), and Rayleigh (1883) and Schlichting (1932) were able to give a 
theoretical explanation of some of these phenomena. More recently, this steady 
streaming has been considered both theoretically and experimentally by a 
number of authors (see, for example, Andres & Ingard (1953) and Stuart (1966)). 
The majority of these investigations have been concerned with either incom- 
pressible or compressible viscous fluids. 

These motions exert steady stresses on boundaries where the circulation occurs; 
while these stresses are typically not large they may be significant in continuous 
removal of loosely adhering surface layers. Also, the unique kind of convection 
or ' stirring ' associated with the acoustic streaming may be especially effective 
in accelerating certain kinds of rate processes. 

In  earlier papers (Frater 1964a, b), it has been shown that, when one considers 
fluids with marked transient elasticity of shape, the nature of the steady flows 
produced by oscillations of a boundary can, under certain conditions, be spectacu- 
larly different from what is encountered in an inelastic viscous fluid. It is there- 
fore of interest to make a theoretical analysis of some other types of steady 
streaming looking for differences in observable characteristics from the corre- 
sponding cases of viscous flow. 

In  the present paper, we consider the steady streaming due to the presence 
of an infinitely long circular cylinder in an infinite expanse of oscillating elastico- 
viscous fluid, the motion at large distances being transverse to the cylinder axis. 

The idealized incompressible elastico-viscous fluid considered has the following 
equations of state, relating the stress tensor sik and the rate-of-strain tensor 

eik = & ( % k , i + a i , k ) :  S ik  = p i k - p g i k ,  (1) 
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In these equations, ui denotes the velocity vector, gik  the metric tensor of a 
fixed co-ordinate system xi, pik the part of the stress tensor related to change of 
shape of a material element, and p an isotropic pressure; yo is a constant having 
the dimensions of viscosity (which can be identified with the limiting viscosity 
at vanishingly small constant rate of shear) and A,, A, are constants having the 
dimension of time. The b/b t  is the convected time derivative (Oldroyd 1950) 
defined thus: if bik is any contravariant tensor, 

where wik = &(uk, - ui, k )  is the vorticity tensor; t is the time. 
It has been shown (Oldroyd 1958) that the class of idealized fluids defined by 

(1) and ( 3 )  exhibit many of the observed non-Newtonian features of some poly- 
mer solutions and other elastico-viscous fluids, provided the constants yo, A, and 
A, are chosen so that 

yo > 0 ( A ,  > A, > 0). 

In  the case of a Newtonian viscous fluid, the present problem was first con- 
sidered by Rayleigh and later by Schlichting, who used the boundary-layer type 
of approximation. Schlichting found that the oscillatory potential flow induced 
a steady-streaming flow which persisted outside the oscillatory boundary layer. 
More recently, Stuart has shown that, if the Reynolds number of the steady 
streaming is large, there is an outer boundary layer in which the steady-streaming 
velocity decays to zero. As a first step in the analysis for an elastico-viscous 
fluid we follow Schlichting and confine ourselves to a discussion of the steady 
streaming within the oscillatory boundary layer. Owing to the complexity of (1) 
and (2) it has not been possible, a t  the present time, to examine the flow outside 
the shear-wave layer or to establish that the oscillatory perturbative vorticity 
does not interact with the potential flow in such a way as to affect the steady 
streaming. It is felt, however, that the present work is a reasonable first approach 
to this problem and is sufficient to indicate the effects of elasticity on the stream- 
ing phenomenon. 

A number of authors have discussed the boundary-layer equations that are 
applicable in the case of certain elastico-viscous fluids; but these were restricted 
to steady flows and it appears that no work has yet been done on periodic bound- 
ary layers in the fluids characterized by equations of state (1) and (2). Further, 
apart from the work of Hsu (1967) on the Oldroyd eight constant model, it 
seems that most discussions have been confined to the Coleman and No11 second- 
order fluid (see, for example, Beard & Walters (1964)). A detailed examination 
of Beard & Walters's paper reveals that an error has been made in the order-of- 
magnitude analysis and, in fact, the steady and non-steady boundary-layer 
equations for the second-order fluid are identica1 to those for a Newtonian viscous 
fluid. The only difference occurs in the expressions for the normal-stresses. By 
putting certain constants appearing in the equations of state considered by 
Hsu equal to  zero we obtain the result that the steady boundary-layer equations 
for the fluid characterized by equations (1) and (2) are also identical to those for 
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a Newtonian fluid. The reason for this is that Hsu considered fluids with extremely 
short memory. It will therefore be of interest to consider what form the periodic 
boundary-layer equations take when less stringent restrictions are imposed on the 
relaxation and retardation times of the fluid. 

The periodic boundary-layer equations are derived and these are used to 
calculate the streamfunction for the steady secondary flow in the boundary layer 
when there is an oscillatory flow parallel to the boundary of magnitude 
U ( x )  exp (int). The convention is adopted that real parts are to be understood 

whenever complex expressions are quoted for physical quantities. 

2. Boundary-layer equations 
We consider a non-steady two-dimensional motion with velocity components 

u = u ( x , y , t ) ,  v = v ( z , y , t ) ,  w = o .  

The equations of state ( 2 )  then reduce to 

(3) 

( a  (au au) a (a,, a,) 
- 7  - + - + A 2 -  -+- +u- -+- 
- a la, ax au ay at ax ay ax ax ay 

The stress equations of motion become 

and the incompressibility condition, ei = 0,  requires 

au a~ 
ax ay 
-+- = 0. (9) 

In these equations, effects of curvature are neglected; x denotes the co-ordinate 
in the direction of flow, y the co-ordinate normal to the surface. 

44-2 
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As equations (4)-(8) stand we are unable to make any boundary-layer type 
approximations because the orders of magnitude of the stress components inside 
the boundary layer are unknown. Some progress can be made, however, if we keep 
in mind Schlichting’s analysis of the corresponding problem for a viscous fluid 
and assume that the amplitude of oscillation is so small compared with the 
radius of the cylinder that the stresses pI1,p2,,p1,, the velocities u,v and the 
pressure p can be expanded as: 

pll = epkyexp (int)+e,[p~~+p:2lexp(2int)], 

p,, = &13(! exp (int) + &2[pfJ +pL?j exp (2  int)], 

pI2 = epLy exp (int) + e 2 b f ]  +PLY exp ( 2  int)], 
u = eu,exp (int) + e2[u,+ u,exp (2 int)], 
v = ev, exp (int) + e2[w, + v, exp (2 int)], 

p = ep, exp (int) + e 2 b s  + p 2  exp (2 int)], 

where e is a dimensionless parameter proportional to the amplitude of oscillation. 
Here we have an,ticipated the result that the secondary flow will have a time- 
independent part plus a part proportional to exp (2 int). Stuart (1966) has shown 
that in the case of a viscous fluid this sort of expansion for the stress and velocity 
components will be valid near the wall but will not give the correct solution far 
away from the boundary. 

If the expressions (10) are substituted into equations (3)-(9), coefficients of E 

equated and the stress components eliminated, the following equations are 
obtained : 

To obtain the equations describing the steady secondary flow we substitute the 
expressions (10) into (3)-(9) and equate coefficients of e2. If the stress components 
are then eliminated, we get: 
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a%, av, 
ax ay 
-+- = 0. 

We take U(x) exp (int) to be the velocity at the edge of the boundary layer. 
Then if Uo is a typical velocity, d a typical length and n-1 a typical time associated 
with the flow wemay define the dimensionless parameter 6 and another dimension- 
less parameter 6 by the following equations, 

We have already assumed that E is small compared with unity and for the case 
we now consider we take 6 to be small compared with E. Under these conditions 
we find apo/ay = 0,  ap,lay = 0 to a first approximation so that apo/ax and ap,/ax 
may be replaced by their values at the edge of the boundary layer, namely 
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Here we have assumed that the flow external to the boundary layer is that of an 
inviscid fluid. This will be so provided nh, and nh, are small compared with €16. 
Substituting for ap,/ax and ap,/ax and neglecting terms of order 6, equations (1 1) 
and (14) reduce to, respectively, 

The appropriate boundary conditions are : 

u, = 0, v, = 0 on y = 0, 

uo+ U as y-tco, 

us = 0, v, = 0 on y = 0, 

u , - f U ,  as y + m .  

Here we have anticipated the result that within the framework of the present 
theory it is not possible to satisfy both the boundary conditions ( 2 3 )  at the 
wall and the condition us -+ 0 as y+ co. Instead the condition at infinity is 
relaxed to  'us remains finite as y-foo'. For a complete discussion of this point, 
the reader is referred to Stuart (1966) and Riley (1965). 

3. Solution of the equations 
From equation (13), it  is possible to define a function $,(x, y) such that 

On writing 

and using (24), equation ( 2 0 )  reduces to the following ordinary differential 
equation 

where 
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The associated boundary conditions are 

dC1 - = 0 7  c , = O  on y = O ,  
dy 

It follows that el = ( 1  - e-dlq)/a - y. (28)  

The equation of continuity (16) is the condition for the existence of a stream- 
function @Jx, y) such that 

On writing 

and using (29) we find that equation ( 2 1 )  reduces to 

c: = l-c;c;+~(c,c;+c&) 

where a prime denotes differentiation with respect to y. This equation is to be 
solved subject to the conditions 

I c; = 0, C2 = 0 on y = 0, 

Substituting for el and performing the necessary integrations we find 

<, = Lo e-2aT + L, e-aq cos by  + L, e-aq sin by  + L, y e-a7 cos by 

+ L, 7 eta? sin by + +Ay2 + By + C, (33) 

where A ,  B and C are constants of integration, a and b are the real and imaginary 
parts of a and L, (i = 0, . . . ,4)  are functions of a and b which are too complicated 
to be given here. Using the boundary conditions (31)  we find immediately A = 0, 
B = 2aL0+aL,- bL,- L, and C = - (Lo+ Ll). It follows that U,(x) is given by 

We are now in a position to apply the foregoing results to the case of oscillating 
flow past a cylinder. For a cylinder we have 

U ( x )  = 3Uosin (xld), (35) 
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where x is measured along the boundary from a stagnation point. If we define the 
angle q5 t o  be x/d, we then have 

U ( x )  = 2Uosin$. (36) 

It follows that (37) 

Substituting these values into (30) we find that the streamfunction for the steady 
part of the secondary flow is 

where <,(q) is given by (33). 

hllh, 
1 
3 
5 
7 
9 

1 
3 
5 
7 
9 

1 
3 
5 
7 
9 

r* 

nh, = 0.03 
2.1 
2.2 

2.6 
3.1 

%ha = 0.09 
3.5 

10-9 

TABLE 1 

nh, = 0.06 

The general forms of the functions @s and Us are not sufficiently simple to permit 
a discussion of the flow pattern without reference to particular cases. Numerical 
calculations have been performed for the cases h,/h, = 3, 5, 7, 9 and the New- 
tonian case (h,/h, = 1)) under each of the conditions nh, = 0*03,0-06,0.09. 

In  each case, it  is found that there are two regions of flow (for a sketch of the 
streamlines in the Newtonian case, see Andres & Ingard (1953)). In  the outer 
region the fluid flows away from the cylinder in the direction of oscillation and 
towards it in the transverse direction. In  the inner region the streamlines are 
closed and the fluid flows towards the cylinder in the direction of oscillation and 
away from it in the transverse direction. Table 1 gives details of the variation of 
the thickness of the inner region (y* say) with nh, for each of the above cases. 
These results show that for nh, = 0.03 the thickness of the inner region is only 
slightly affected by the presence of elasticity in the fluid but for higher values of 
nh, the effect of the elasticity is to increase this thickness; the greater the value 
hJh, the greater the increase. Quite substantial increases being obtained in 
certain cases. 
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Details of the function p are given in table 2 .  In  the case of a Newtonian fluid, 
the function p is independent of frequency and is given by ,u = 0.75. The results 
show that p, which is proportional to the steady second-order velocity just out- 
side the boundary layer, can both exceed and be less than the corresponding 
value for the viscous fluid, depending on the magnitudes of the dimensionless 
groups nh, and h,/h,. In  particular, when nh, = 0.09, this steady drift velocity 
in the case hJh, = 9 is only about Qth the corresponding value for the viscous 
fluid. 

hllh, 
3 
5 
7 
9 

3 
5 
7 
9 

3 
5 
7 
9 

P 
0.773) 

nh, = 0.03 
0.782 
0-763) 

0.780) 

nh, = 0.06 
0.662 0.754 t 
0.510 J 
0.768) 

nh, = 0.09 0.410 
0.097 1 

TABLE 2 
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